Tuesday, February 3, 2026

Vibe Coding: Meaning and Origins

 

What is Vibe Coding




Vibe coding is the practice of building software by directing outcomes in plain language while an AI generates and refines the code. Your role looks less like “typing syntax” and more like a product director:
  • You define intent: what the app should do and why.
  • You set constraints: tech stack, performance budgets, security rules, data boundaries.
  • You shape the experience: workflows, UI behavior, edge cases, and “done means…”
  • You own the judgment: acceptance criteria, tradeoffs, and what’s safe to ship.
In practical terms, you might say: “Generate a cross-platform social analytics dashboard with scheduled posts and engagement by channel.” And the agent returns runnable code: queries, UI components, wiring, and a first pass at structure. Then you iterate conversationally: run it, capture what breaks, paste errors, request targeted fixes, and keep steering with crisp prompts.
It shines for prototypes, internal tools, and accelerating senior devs. The payoff is faster time to first value and less context switching, so you can spend more time on UX and business logic.

Origins and Why It Spread

 


The phrase “vibe coding” took off in early 2025, after Andrej Karpathy described a new, surprisingly fluid workflow: you “see stuff, say stuff, run stuff, and copy-paste stuff” while the AI does the heavy lifting. The phrase stuck because it reframed AI coding as a creative, conversational flow, not a grind through syntax and boilerplate.
It spread fast because three trends collided at the perfect moment:
  1. Demos were irresistible: prompt to a working app in minutes.
  2. Tools matured together: editors and agents like Cursor, Replit, Vercel, Lovable, and GitHub made the workflow accessible and repeatable.
  3. English became the interface: non-developers could participate meaningfully by describing outcomes.
Social platforms accelerated the loop. Short, replicable clips on X and LinkedIn turned “I built this in 10 minutes” into a contagious format. Teams under budget and deadline pressure adopted it for the same reason: it shipped prototypes and internal tools faster.

What You Gain


Vibe coding’s biggest impact isn’t that it writes code faster. It changes who can build and how quickly teams can learn.
  • Wider access to building: entrepreneurs, designers, and domain experts can turn intent into software without mastering a stack.
  • Rapid prototyping: idea-to-MVP compresses from weeks to hours, helping teams validate sooner.
  • Developer productivity: AI handles scaffolding and repetitive glue work; humans focus on architecture and risk.
  • Conversational iteration: small, reversible steps make experimentation safer and more auditable.
  • Governance and control: constraints and acceptance criteria stay human-owned; automation makes quality visible.
  • More shots on goal: faster attempts unlock more UX variants, feature experiments, and workflow trials.
  • Cost and risk reduction: harden only what proves traction; keep changes versioned and tested.

Limits To Watch (And How To Fix Them)




  • Technical complexity: agents can gloss over concurrency, scaling, edge cases, or real-time constraints.
    Fix: state SLAs, data volumes, and latency targets; add load tests and profiling.
  • Production readiness: “works” can hide inefficient queries, leaky abstractions, and inconsistent structure.
    Fix: plan refactor time; standardize naming/folders; require migration-safe changes and rollback plans.
  • Debugging opacity: model choices can be hard to trace.
    Fix: require rationale for non-trivial decisions; request minimal reproducible examples per fix; keep a prompt contract/changelog.
  • Maintenance debt: fast loops can scatter logic and dependencies.
    Fix: schedule stabilization; enforce linting, types, and dependency rules in CI.
  • Security gaps: validation, authZ vs authN, secrets handling, safe defaults can be missed unless demanded.
    Fix: bake a threat model into prompts; automate SAST/DAST, dependency audits, secret scans, and baseline TLS/CSP standards.
  • Overreliance: teams that don’t understand generated code struggle during incidents.
    Fix: keep humans owning critical paths (auth, billing, migrations, PII); add design reviews and a short “owner’s manual.”
  • Limited fit for niche logic: precision domains and low-latency systems often need bespoke work.
    Fix: constrain with domain examples, acceptance tests, forbidden choices, and golden datasets.
  • Prompt quality ceiling: vague input creates fragile output.
    Fix: specify stack/versions, performance budgets, data shapes, and error rules; keep requests atomic and test-driven.

Tips That Raise Quality


For more effective vibe coding, keep your prompts atomic - ask for one change at a time, spell out inputs and outputs, and include any performance or security bounds so the agent can’t “solve” the problem in a risky way. Share only the context that matters, like the exact files, schemas, or logs involved, and expand incrementally instead of dumping the whole repo. Treat every loop as a checkpoint by committing AI-generated diffs with a one-line rationale so you can roll back quickly if the direction is wrong. Add tests early and make reliability non-negotiable by blocking merges when checks fail - linting, types, and CI should be the gate, not a suggestion.
When something breaks, fix it through errors and minimal patches that preserve public APIs and stated contracts, rather than letting the agent rewrite half the system. Ask explicitly for tradeoffs and alternatives, and require a short explanation of what changed, where it changed, and why it was done that way. Freeze interfaces (DTOs, events, and endpoints) so internal refactors stay safe and predictable as the code evolves. Finally, set guardrails up front around auth, validation, dependency policy, rate limits, and logging, so the agent builds inside a secure, observable box from the start.

When To Use It

  • Prototypes and internal tools that need speed and evidence.
  • Feature spikes and proof of concepts before committing full builds.
  • Senior dev acceleration where architecture and guardrails are already defined.

When To Avoid Or Limit It

  • Ultra low latency or high throughput systems without clear performance budgets.
  • Domains with strict compliance or safety where explainability and formal verification are mandatory.
  • Highly bespoke algorithms that need handcrafted optimization.

Bottom Line


Vibe coding is building software by describing outcomes in plain language while AI generates and refines the code. It shifts you from writing syntax to directing intent, constraints, and user experience. Used with tests first workflows, clear interface contracts, and security guardrails, it turns ideas into working software at the speed of conversation without surrendering control. The timing is right, the tools are ready, and the teams that master this loop will ship faster, learn sooner, and spend more of their time on the parts of software that move revenue, retention, and user experience.

Tuesday, January 27, 2026

5 Best Fathom AI Alternatives

What is Fathom AI?

Fathom AI is a meeting recorder and transcription assistant built to capture, highlight, and summarize calls so you can stay present in the conversation. It supports real-time transcription in multiple languages and offers a compelling free plan for individual users. Customer-facing teams use it to flag key moments, share takeaways, and help clients revisit specific sections without scrubbing through full recordings.

Why Teams Look for Fathom AI Alternatives

Fathom is strong for quick summaries and personal note-taking, but teams often hit limits when meeting output needs to drive coordinated follow-through across sales, CS, delivery, and compliance.
Common triggers to evaluate alternatives:
  • Stronger action-item accuracy for sales and CS (less cleanup post-call).
  • Deeper CRM/PM integrations so next steps instantly become owned tasks.
  • Better client sharing controls (brand-safe pages, permissions, external-ready formatting).
  • Team-grade admin, libraries, analytics, and standardized templates.
  • Recording flexibility (bot-free capture, fewer join hiccups, tighter privacy).
  • Conversation intelligence and coaching tied to pipeline, renewals, and risks - not just notes.

5 Best Fathom AI Alternatives

1. FuseBase

FuseBase is a bot-free recorder plus client workspace that turns every Zoom/Teams/Meet call into a branded mini-room with recap, decisions, next steps, and supporting assets. Instead of shipping a naked transcript link, you share an on-brand, guided space under your domain that clients actually return to. Context-aware AI agents monitor calls for risks, opportunities, and follow-ups, auto-create tasks, update trackers, and kick off workflows in your CRM or project tools. Leader dashboards surface real signals like missing next meeting, scope creep, or renewal risk so you act fast.

Where FuseBase wins
  • Branded mini-rooms clients can revisit (recap, decisions, assets, approvals).
  • Turns meetings into client-ready deliverables, not just transcripts.
  • Output-to-workflow in one place: tasks, CRM updates, fields, automations.
  • Trackers that light up real revenue and retention signals across calls.
  • Executive visibility: renewal risk, scope creep, stalled handoffs, no next step.

Cons
  • If you only need basic transcription + a quick summary, this is more than you need.
  • Light setup recommended to align branding, templates, and tracker definitions.

2. MeetGeek

MeetGeek is an automation-forward assistant that records, transcribes, and summarizes live meetings and uploads. It supports dozens of languages across Zoom, Microsoft Teams, and Google Meet, and delivers clean summaries with minimal setup. With integrations (HubSpot, Slack, Google Calendar), templates, folders, and timestamped highlights, it folds into team workflows quickly.

Where MeetGeek wins
  • 2,000+ integrations to keep notes and actions moving.
  • Live meetings and pre-recorded files with broad multilingual coverage.
  • Templates, folders, and timestamped highlights for consistent handoffs.
  • Meeting analytics, sentiment, and performance insights for coaching.

Cons
  • Free tier limits apply to transcription/advanced features.
  • Pricing can climb as teams scale and need premium capabilities.

3. Krisp

Krisp optimizes call quality with bot-free operation, real-time AI noise cancellation, and clarity tooling. It also provides unlimited free transcription with privacy-first handling. Notes and summaries can be generated on-device, with direct support for Zoom, Google Meet, and Microsoft Teams. Solid for teams that value audio fidelity and simple notes without introducing a meeting bot.

Where Krisp wins
  • Bot-free capture lowers consent friction and improves privacy posture.
  • Removes background noise, echo, and external voices in real time.
  • Unlimited free transcription for easy, low-risk trials.
  • Desktop and mobile support for on-the-go recording and notes.

Cons
  • Not built for deep deal analytics, coaching, or forecasting.
  • Aggressive suppression can occasionally flatten voice tone.

4. Otter.ai

Otter.ai specializes in live transcription and in-meeting clarity. Otter AI Chat lets you query the conversation in real time (e.g., “What were my action items?”). You can upload recordings for quick transcription, add timestamps/highlights, and share summaries for alignment. Audio recording and live captions are standard; video recording is available on Enterprise.

Where Otter wins
  • Real-time transcription you can follow during the call.
  • Otter AI Chat for instant answers on decisions and action items.
  • Smooth upload workflow for pre-recorded content.
  • Collaborative timestamps and highlights to speed follow-ups.

Cons
  • Accuracy can dip with heavy jargon or strong accents.
  • Focuses on transcription over deeper revenue intelligence or coaching.

5. Read.ai

Read.ai leans into analytics-first recording and post-call intelligence. It pairs clean transcripts with real-time sentiment, engagement scoring, and speaker coaching signals. Their upgraded transcription overlays audience reactions on the timeline, while AI-generated minutes of meeting distill decisions, owners, and due dates. Setup is straightforward, bilingual accuracy is strong (notably Spanish-English), and clear in-meeting branding helps participants understand what is being recorded.

Where Read.ai wins
  • Sentiment and engagement overlays.
  • Coaching feedback loops: talk-time balance, clarity, and filler-word tracking.
  • Search Copilot answers questions from meetings, email, and documents.
  • Reliable bilingual transcription and summaries, especially for Spanish-English conversations.

Cons
  • Bot persistence can be finicky - reports of auto-joining or calendar attachment after deactivation mean admins should review settings closely.

Choosing the Right Fathom AI Alternative

Pick based on what must happen after the meeting - not just during it.
  • Need client-ready, reusable spaces instead of naked links? Choose FuseBase. You’ll get branded rooms, internal/external split, trackers, and workflow outputs that protect revenue and reduce churn risk.
  • Want reliable, set-and-forget recording with consistent summaries at scale? MeetGeek is a safe, fast-adopting bet.
  • Care most about call quality and privacy while keeping notes simple? Go with Krisp.
  • Want rapid transcription and a searchable meeting memory with in-meeting Q&A? Otter.ai fits.
  • Need meeting analytics and engagement signals? Pick Read.ai.

Top 5 Jamie AI Alternatives

What is Jamie?


Jamie is an AI meeting assistant built to capture what happened in a meeting without manual note-taking. It turns conversations into structured summaries, decisions, and action items so teams can align and follow up faster. For teams, the pitch is consistent, standardized meeting notes across time zones and functions with minimal effort.

Jamie Pros

  • Cuts recap time: Auto summaries and next steps reduce post-call admin.
  • Better alignment: Decisions and owners are captured so fewer balls get dropped.
  • Repeatable formats: Notes look consistent across teams and meeting types.
  • Easy async: Quick sharing for stakeholders who missed the call.
  • Useful for distributed teams: Helpful when schedules and time zones don’t overlap.

Jamie Cons

  • Quality swings: Noisy audio, accents, or cross-talk can hurt accuracy.
  • Privacy posture: Recording and processing can raise security questions.
  • Integration friction: Weak calendar/CRM/task syncs create manual work.
  • Human review still required: Nuance and context often need a second pass.
  • Cost at scale: Per-seat pricing adds up for meeting-heavy orgs.
 


5 Best Jamie AI Alternatives

1. FuseBase

FuseBase is a bot-free recorder and AI note taker built for revenue moments: discovery, renewals, onboarding, and multi-stakeholder delivery. Instead of handing clients a naked transcript link, FuseBase drops each call into a branded mini room with a clean client-ready recap, decisions, next steps, files, and context. Smart Partitions keep internal coaching, risks, and margin protection separate from what the client sees. Agents don’t stop at summaries. They flag scope creep, missing next steps, and unbilled requests, then convert insight into tasks and trackers inside the same workspace.

Best for: Professional services, agencies, consultancies, B2B SaaS CS and delivery teams that need client-facing outputs and internal guardrails.

Pros
  • From transcript to workflow: Tasks, trackers, and records live in FuseBase, not a separate tool.
  • Internal vs external by design: Clean client recap split from internal risks and coaching.
  • Deal rooms and portals: Branded space instead of generic links elevates client experience.
  • Margin protection: Trackers surface scope creep and missing commitments across calls.
  • Bot-free capture and strong consent flows reduce privacy friction.

Cons
  • Not built for hardcore cold-call coaching.
  • Might feel heavy for tiny teams with simple notes-only needs.
 

2. Grain

Grain focuses on fast note capture, highlights, and CRM hygiene. It automates notetaking and CRM entries, makes it easy to create clips and reels, and provides baseline analytics like talk time and keyword trends. Strong HubSpot support makes it attractive for go-to-market teams who want quick wins without deep workflow changes.

Best for: Teams that share moments, not full recordings, and rely on HubSpot.

Pros
  • Automatic CRM sync for notes, tasks, and activities.
  • Live Notepad for real-time tags and instant clips.
  • Simple conversation metrics: talk time, filler words, pace.
  • Easy highlight reels for onboarding and knowledge sharing.
  • Fast setup and responsive support.
Cons
  • No true call library or centralized coaching dashboard.
  • Limited auto-scoring and AI coaching depth.
  • External sharing can hit permission snags.
 

3. Krisp

Krisp’s strength is pristine audio and clean transcripts. It eliminates background noise and echo in both directions, offers live transcription, and keeps a searchable history. Privacy-conscious orgs and teams in noisy environments pick Krisp as a reliability layer rather than a full CI platform.

Best for: Teams that prioritize audio quality and straightforward transcription without a meeting bot.

Pros
  • Two-way noise and echo cancellation for clear calls.
  • Bot-free and privacy-forward by default.
  • Unlimited live transcripts on the free tier.
  • Searchable meeting history.
  • Mobile recording with noise cancellation; accent clarity features.

Cons
  • Minimal conversation intelligence, coaching, or scoring.
  • No CRM sync or task automation.
  • Great layer for audio and transcripts, not for end-to-end workflow.
 

4. Fellow

Fellow is calendar-native meeting ops. It activates notes from your calendar, blends collaborative agendas with AI summaries, and ties outputs to recurring meetings or projects. It shines for managers and cross-functional leaders who live in back-to-back calls and want structure before, during, and after meetings.

Best for: Managers and teams that want agenda discipline, templates, and real-time collaboration.

Pros
  • Tight Google and Microsoft calendar integration.
  • Collaborative agendas and 500+ templates.
  • AI summaries, follow-ups, and tailored prompts.
  • Org-level insights into meeting load and coverage.
  • Strong fit for recurring operational rhythms.
Cons
  • Lighter analytics and coaching than CI tools.
  • Not aimed at sales intelligence or deep revenue analytics.
 

5. tl;dv

tl;dv is the researcher’s recorder: fast tagging, timestamped highlights, and shared libraries plus multi-language support. It captures Zoom, Meet, and Teams calls with real-time transcription and post-call summaries. A favorite for product and UX teams running interviews and workshops.

Best for: Research, UX, and product teams that curate insights across many sessions.

Pros
  • Real-time recording and transcription across major platforms.
  • Quick tagging and timestamped highlights.
  • Libraries to curate and revisit insights.
  • AI summaries that make next steps explicit.
  • Strong 30+ language coverage.
Cons
  • Some integrations and AI features are behind paid plans.
  • Light CRM and sales workflow capabilities.
  • Bot-based recording may clash with consent policies.
 

Summary

If you only need notes, most tools will do. If you need meetings to drive execution, pick a system that closes the loop. FuseBase is built for client-facing revenue moments where the cost of missed next steps, silent scope creep, and messy handoffs shows up in ARR and margin. It turns every call into a branded room with client-ready outputs, internal coaching, and trackers that protect revenue. That’s the gap between having a transcript and actually moving the account forward.

Thursday, March 6, 2025

Як знайти ідею для курсу або послуги, яка принесе повний запис із клієнтів в Інстаграм

 

  • Визначення власних компетенцій:
    Використовуйте три «кружечки»:

    1. Те, що ви робите добре.

    2. Те, що вам подобається робити.

    3. Область, в якій ви хочете розвиватися.
      Перетин цих аспектів допоможе знайти вашу унікальну нішу.

  • Визначення цільової аудиторії:
    Важливо зрозуміти, кому саме ви можете допомогти своїми знаннями та вміннями. Автор наводить приклад: вона обирає працювати з тими, хто хоче продавати та стабільно заробляти в соцмережах, масштабувати особистий бренд і досягати фінансової незалежності.

  • Вибір формату продукту:
    Після визначення своєї експертизи та цільової аудиторії потрібно обрати формат: курси, марафони, інтенсиви, консультації чи наставництво. Подальші відео розглянуть різні варіанти форматів і допоможуть підібрати оптимальний.

Wednesday, January 22, 2025

СТРАТЕГІЯ маркетингу та продажів 2025: як створити прорив для вашого бізнесу



1. Інтеграція маркетингу та продажів  

Кордони між маркетингом і продажами все більше стираються. Сучасні стратегії вимагають синхронізованої взаємодії:  

- ШІ та автоматизація: Чат-боти обробляють первинні контакти, а CRM-системи аналізують дзвінки для вдосконалення скриптів. Маркетингові матеріали (наприклад, кейси, вебінари) мають узгоджуватися з меседжингом продажів.  

- Спільні цілі: Обидва відділи мають фокусуватися на єдиних метриках (наприклад, кількість дотиків з клієнтом, конверсія) для узгодженості.  


 2. Роль ШІ та автоматизації  

ШІ підвищує ефективність, але вимагає обережного впровадження:  

- Переваги: Автоматизує створення контенту (пости, реклама), аналіз дзвінків, оновлення CRM. Дозволяє швидко масштабуватись.  

- Ризики: Надмірна автоматизація призводить до безособових взаємин (наприклад, шаблонні скрипти). Важливо зберігати людяність.  


 3. Автентичність та людяність  

Довіра будується через прозорість та живі взаємодії:  

- Живий контент: Непідготовлені ефіри та "закулісся" (наприклад, прямі трансляції Дмитра на YouTube) викликають довіру.  

- Цінності бренду: Демонструйте культуру команди, місію та реальний вплив (наприклад, екологічні ініціативи). Уникайте надто "глянцевого" контенту.  


 4. Багатоканальний маркетинг  

Використовуйте різні платформи для збільшення дотиків:  

- Адаптація контенту: Переробляйте довгі відео у короткі ролики (Reels, TikTok), блоги, розсилки.  

- Послідовність: Дотримуйтесь єдиного стилю на всіх каналах (YouTube, Instagram, Telegram).  


 5. Гіперперсоналізація  

Глибоке розуміння клієнта — основа успіху:  

- Робота з даними: Використовуйте опитування та CRM, щоб персоналізувати пропозиції. ШІ допомагає прогнозувати потреби (наприклад, індивідуальні ціни).  

- Проактивність: Вирішуйте "приховані" проблеми клієнтів (наприклад, контент про втому як наслідок неправильного харчування).  


 6. Операційна ефективність  

Оптимізуйте процеси, щоб уникнути розривів:  

- CRM-системи: Централізуйте дані про клієнтів (від першого контакту до післяпродажу).  

- Синхронізація: Узгоджуйте обіцянки маркетингу з роботою відділу продажів (наприклад, уникайте суперечностей у пропозиціях).  


 7. Стратегічні рекомендації на 2025  

Дії для конкурентоспроможності:  

- Інвестуйте в CRM: Впроваджуйте системи на кшталт Salesforce або HubSpot.  

- Навчайте менеджерів: Поєднуйте ефективність ШІ з емпатією — тренуйте реальні сценарії.  

- Баланс автоматизації: Використовуйте ШІ для рутини, але пріоритетізуйте живий контент (вебінари, Q&A).  

- Фокус на нішах: Таргетуйте ідеальних клієнтів через персоналізовані кампанії.  


Wednesday, January 15, 2025

ВИЯВЛЕННЯ СУПЕРСИЛИ: як її знайти, конкретизувати та монетизувати. Розібрав двох учасників ефіру!


Кожна людина має унікальну суперсилу — природні здібності або навички, які даються їй легко, приносять задоволення та можуть стати основою для реалізації й заробітку. Головне — визначити її, конкретизувати та перетворити на цінність для інших.


 Ключові етапи роботи з суперсилою:

1. Як знайти суперсилу:  

   - Шукайте те, що виходить легко, без надзусиль, приносить радість і дає швидкі результати порівняно з іншими.  

   - Зверніть увагу на сфери, де ви маєте великий потенціал або тисячі годин практики (наприклад, маркетинг, спорт, комунікації).  

   - Отримайте зовнішній фідбек — іноді суперсилу помічають оточуючі.  


2. Конкретизація:  

   - Суперсила має бути чіткою, а не абстрактною. Наприклад, не просто "маркетинг", а "продажі через холодні дзвінки з конверсією 70%".  

   - Приклад від учасника ефіру: вміння масштабувати бізнес до $600K/міс через особисті продажі партнерам у 18 країнах.  


3. Монетизація:  

   - Розпакуйте технологію: переведіть неусвідомлені навички в конкретні кроки (наприклад, створити методику навчання продажам).  

   - Створіть унікальний офер: курс, консультації, тренінги або внутрішній продукт для команди.  

   - Використовуйте візуальний контент (наприклад, Reels у Instagram), щоб показати трансформації клієнтів: від проблеми до рішення завдяки вашій суперсилі.  



- Суперсила — це ваша унікальна цінність, яка допомагає іншим і приносить задоволення вам.  

- Її можна використовувати для заробітку, розвитку бізнесу або створення особистого бренду.  

- Важливо: працюйте з тими, хто цінує вашу суперсилу, і не намагайтеся бути "для всіх"